1. Magic Triangle	2. A Tasty Volume	3. 5 Triangles	4, 11 Squares from
Draw a triangle. Put a different \# 1-9 at each corner	What is the volume of a tube with radius Z		11 Toothpicks? Using 11 toothpicks, can
1 4 6 3 8 5 On each side, write the total of its 2 corners.	and height A ?	\qquad Start with 1 equilateral triangle made by 6	you make 11 squares? (You can also use straws, pencils, etc.)
Draw lines from each corner to its opposite side. Total the \#s at the end of each line. What do you get? Why?		toothpicks (or straws, pencils, etc.). Challenge: add 3 toothpicks to result in a total of 5 equilateral triangles.	
5. Diamond Challenge Lay out 5 toothpicks (or pencils or crayons) forming a diamond with line in middle.	6. Equilaterals Using 9 toothpicks (or crayons, pencils, etc.), make 3 equilateral triangles side by side:	7. Square Deal	8. Secret Code
			How many letters are in each word? What famous math concept
line in middle. Challenge: Take away 3, put back 2, \& have same design that you started with.	Challenge: Can you move 2 toothpicks to make 4 equilateral triangles?	Use 12 toothpicks to form 4 squares as above. Challenge: Can you remove 2 \& have 2 squares left?	does this represent? May I have a large container of orange juice now please.
9. A Triangular Challenge	10. Triangular Challenge \#2		Solutions 1B
Can you place 6 white balls and 4 gray ones in the 10 slots below so that no 3 white balls form an equilateral triangle?	Can you place 5 striped balls, 5 polka dot balls, and 5 solid balls in the triangle below so no 2 of the same type balls are touching?	3.	6. Move to from the right to the top: 7.
		using 7 . Use 2 to make a cross inside ea sq. $=8$ squares. + 3 big ones.	9. Here is one solution:
		5. Push any 3 away, then put back the other 2, uniting all again.	10.

